SUITABILITY OF CONCRETE USING CUPOLA SLAG AS REPLACEMENT OF COARSE AGGREGATE

Mr. Vishwash K. Mistry¹, Prof. B.R. Patel², Prof. D.J. Varia³

Abstract— Main source of getting natural aggregates is through extraction from rocks. The excavation of rocks from valley produce worst environmental impacts of cutting and screening out coarse aggregate make concrete costlier. Even only natural resources of Coarse aggregate can't fulfil the requirements of constructions so there is a need to search a replacing material like cupola waste in this study efforts are made to replace the natural aggregate with cupola slag aggregates in varying percentage of replacement from 0 to 100 percent for intervals of 10 percent for M20 grade concrete with 0.5 constant W/C ratio under accelerated concrete curing condition for 3 days at 85 degree temperature.efforts are made to carry out impact on compressive strength of concrete.

Index Terms— Cupola Slag, Compressive Strength, Aggregate Replacement, Optimum Percentage, Crushing Value, Polypropylene Fibres (PPF), Physical Properties

____ **♦**

1 INTRODUCTION

At present, development in India is mainly by implementation of infrastructure projects. Due to that construction projects are executed at very rapid rate. In the developing country like India, availability of natural resources is also an influencing factor apart from funding due to this rapid infrastructural growth it requires large amount of construction material like cement, aggregates, wood etc. R.C.C. structures are preferred over steel structures in India which requires larger quantity of concrete. Since availability of natural resources of concrete is limited as we get it from natural deposits at present, there is a need to develop a new material that can effectively replace with conventional without compromising with strength and durability properties of concrete.

In this study efforts are made for replacing naturally available coarse aggregate with cupola slag aggregates. Cupola slag is by-product of cast iron manufacturing unit it is produced during the separation of the molten steel from impurities in cupola furnaces. The slag occurs as a molten liquid melt solidifies upon cooling. Complex solution of silicates and oxides is generally found in a lump which solidifies upon cooling. About 5-7% of waste is generated in cupola furnaces while production of cast iron. Industry produces 50-3000 Tonnes of C.I. depending upon furnace size and requirements. About 3000 furnaces are running Gujarat at present. Due to that larger amount of waste is generated which is presently going to land filling only, polluting environment. At present Industrialists are paying for disposal of this waste. As per calculations made, this waste can

Decrease 1% demand of natural aggregate in Gujarat with crores of economical saving in country benefit. Cupola waste collected from industries is crushed in the jaw crusher and sieved through 20mm sieve to get appropriate size of aggregates. In this work, aggregates passing through 22 mm and retained on 20mm sieve and, passing through 12mm and retained on 8mm is used as 20mm and 10mm aggregates. We get 70% sized aggregates by mechanical crushing due to hardness of material.We have used cupola slag aggregate in M20 grade concrete with constant w/c ratio of 0.5.first efforts were made to find optimum percentage of cupola waste with gap of 10% from 0 to 100 percent.5 cubes were casted for each mix. From that 3 was cured in accelerated concrete curing tank for 3 days at 85 degree temperature and 2 in normal curing for 28 days. Resulting strength was compared for each mix. Physical and chemical properties of waste were carried out to check the suitability to use as aggregate.

2 Material Used

Physical tests of each material were carried out before used in concrete as per IS 383 and IS 12269 for aggregate and cement respectively.

2.1 CEMENT

ISI marked OPC 53 Grade Riddhi cement was used in this work with specific gravity of 3.15, standard consistency 26%, 42 and 240 minutes of initial and final setting time respectively, soundness of 2mm and compressive strength of 28,39 and 55 MPa at 3, 7 and 28 days respectively.

2.2 SAND

Sand obtained from Banas River, confirming to Zone-II, with fineness modulus of 2.25, specific gravity of 2.78, and water absorption of 3.1% was used in this work.

2.3 COARSE AGGREGATES

Coarse aggregates obtained from basalt rock were used with combination of grits in 60:40 ratios with following physical

 ^{1.}Vishwash K. Mistry, Pursing masters in structural engineering at MIT Basna, Mahesana, Gujarat Technological University, India, PH-9558494707. E-mail: <u>vishwashcivil@gmail.com</u>

^{• 2.}Prof. B.R. Patel, Currently working as assistant professor, Department of civil engineering, Ganpat University, India

^{• 3.}Prof. D.J. Varia is currently working as assistant professor in GEC Palanpur,Gujarat Technological University,India

properties.

Table 1: Physical Propertites of coarse aggregate and Grit

Properties	Aggregate	Grit
Fineness Modulus	1617	7.87
Bulk Density	3.82	1717
Specific Gravity	2.57	2.31
Water absorption	1.17	1.34
Moisture Content	0.012	0.032
Crushing Value	17%	-
Impact Value	19%	-

2.4 CUPOLA SLAG

Cupola slag procured from, G.I.D.C. Chhatral is used in this work after crushing and sieving operation

Fig.1. Cupola Slag

Fig.2. Cupola Slag crushed to 20mm and 10mm

Physical properties were find out as per IS 383 and compared with natural aggregates as below.

Table: 2 Physical Properties of Cupola Slag

Property	Results	IS Requirements
Fineness Modu-	4.60	-

lus		
Crushing Value	27%	Concrete < 45
	2170	Road < 30
Impact Value	26%	Concrete < 45
impact value	2070	Road < 30
Flakiness Index	11%	< 15%
Elongation In-		< 15%
dex	14%	
Specific Gravity	2.50	-
Bulk density	1640	-
Moisture Con-		_
tent	0.004	
Water Absorp-		
tion	0.4	< 2

Chemical properties of slag tested by WDXRF method at divine metallurgical services was found as under.

Table 3: Chemical Properties of Cupola Slag

Element	Percentage
Al ₂ O ₃	9.5
MnO	2.9
SiO ₂	45.0
MgO	2.35
TiO ₂	1.00
CaO	14.250
Fe ₂ O ₃	23.500
Cr ₂ O ₃	0.300
Na ₂ O	0.500
K ₂ O	0.200

2.5 POLYPROPYLENE FIBRES

Polypropylene fibres with following physical and chemical properties are used in this work.

Table 4: Physical and Chemical Properties of PPF

Sr. No.	Properties	Value
1	Specific Gravity	0.91
2	Apperance	Whitish
3	Melting Point	165 C

IJSER © 2016 http://www.ijser.org

4	Diameter	30 Micron	
-	Diameter	50 MICTOR	
5	Cut Length	20mm	
6	Water absorption	<0.1%	
7	Resistance to Alkalies	Excellent	
8	Resistance to Acids	Excellent	
9	Resistance to oxidizing	Good	
	Agents	Good	
10	Resistance to organic Sol-	Good	
10	vent	6000	
10	Distantiant Salarant	Non bio-	
10	Biological Solvent	degradable.	
11	Elongation Percentage	58%	

3. EXPRIEMENTAL METHODOLOGY

M20 Concrete grade was selected to find optimum percentage with 1:1.5:3 mix composition with constant w/c ratio of 0.5. Total 55 Cubes of size 150mm x 150mm x 150mm was casted for assessment of compressive strength. Curing comparison was made between ACC tank and normal curing for 3 day and with degree and 28 days with 27 degree temperatures respectively. Detailed mix proportion for each mix is tabulated in table 3.

COMPRESSIVE STRENGTH

All cubes were tested under 2000 KN capacity compression testing machine after 28 days according to IS: 516. Specimen was placed at centre of CTM as shown in figure 3. load was applied gradually still the failure of specimen. Compressive strength was carried out using following relation.

C = P/A

Here, C is compressive strength in MPa, P is the load applied in KN, A is the surface area of cube in mm^2

Table 5: Material Requirement for different replacement levels

Name	Ce- men F.A. Coarse Aggre- gate(Kg)		Cupola Slag Ag- gregate(Kg)			
	t (Kg)		20mm	10mm	20mm	10mm
СМО	10	15	18	12	-	-
10C	10	15	16.2	10.8	1.8	1.2
20C	10	15	14.4	9.6	3.6	2.4
30C	10	15	12.6	8.4	5.4	3.6
40C	10	15	10.8	7.2	7.2	4.8
50C	10	15	9	6.0	9.0	6
60C	10	15	7.2	4.8	10.8	7.2
70C	10	15	5.4	3.6	12.6	8.4
80C	10	15	3.6	2.4	14.4	9.6
90C	10	15	1.8	1.2	16.2	10.8
100C	10	15	-	-	18	12

4 RESULTS AND DISCUSSION

Results for compressive strength for both ACC and natural curing are tabulated in table 6.

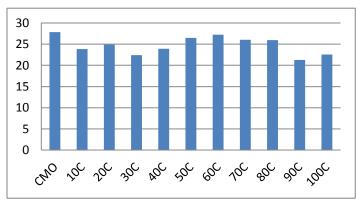
For ACC curing, we are getting strength drop for Initial and final replacement, but in between replacement percentages strength is increased in between 50 to 80 percent replacement. For ACC curing 60% replacement gives higher strength.

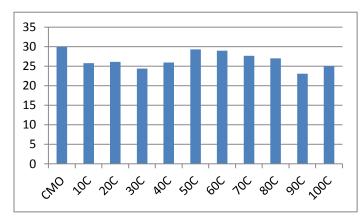
For normal curing required characteristic mean strength for M20 grade concrete is also obtained at 80% replacement. So it can be considered as optimum percentage of replacement.

Due to hardness of material there may flexural strength can be decreased which can be improved by addition of polypropylene fibers.

Addition of 0.2% PPF by weight of cement increases compressive strength by 23%

Fig. 3: Compressive Strength Test on Cube

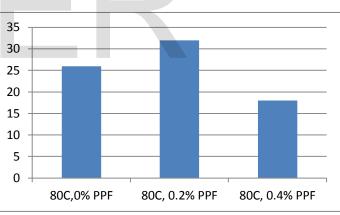

Table 6: Compressive strength results for ACC and Natural


Curing Mean Mean

Nam e	Compres- sive Load Taken	Compres- sive Strength	Mean Compres- sive Strength (ACC Curing)	Mean Compres- sive Strength (Natural Curing)
СМ	630.9	28.04		
0	659.20	29.29	27.85	29.95
	590.53	26.24		

IJSER © 2016 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 ISSN 2229-5518

			-		
	538	23.91		25.75	
10C	535.20	23.78	23.85		
	584.80	25.99			
	594.80	26.43			
20C	497.50	22.11	24.89	26.10	
	525.30	23.34	-		
	514.3	22.85			
30C	508.9	22.61	22.36	24.36	
	486.20	21.60	-		
	560.9	24.93			
40C	537.9	23.90	23.89	25.97	
	514.1	22.84	-		
	602.7	26.78			
50C	552.3	24.54	26.46	29.28	
	631.7	28.07	-		
	659.90	29.32			
60C	567.0	25.20	27.24	29.0	
	612.30	27.21			
	572.90	25.46		27.65	
70C	579	25.73	25.99		
	602.8	26.79			
	548.7	24.38			
80C	646.5	28.79	25.95	27.02	
	555.4	24.68	-		
	461.80	20.52			
90C	502.60	22.33	21.25	23.08	
	470.90	20.92	-		
	482.4	21.44			
100C	529.1	23.51	22.58	25.0	
	513.3	22.81	-		
			1	1	



Graph 2: 28 Days Compressive Strength for Natural Curing

Table 7: Compressive strength Results for Optimum Percentage with Different Percentage of PPF

Replacement	Addition of PPF (By percentage of ce- ment)	Average Com- pressive strength achived (Mpa)
80C	0%	25.95
80C	0.2%	32
80C	0.4%	18

Graph 3: 28 Days Compressive Strength with PPF

5 FUTURE WORKS

Flexural and split tensile strength will be carried out for M20 grade of concrete with optimum percentage. Environmental feasibility will be carried out as per Le-chat analysis. Further, workability and durability aspects of the same grade will be checked and compared to control mix.

6 ACKNOWLEDGMENT

We acknowlegde the co-operate of all the faculty members, lab assistants and friends who helped a lot in this work.

7 REFERENCES

- [1] R. Balaraman and S. Anne Ligoria, Utilization Of Cupola Slag In Concrete As Fine And Coarse Aggregate, International Journal of Civil Engineering and Technology, Aug 2015, Vol 6
- [2] Mr.T.Yuvaraj, Dr.M.Palanivel, Environmental Feasibility in Utilization of foundry solid waste for M20 Concrete Mix, IOSR Journal of Environmental Science Toxicology and Food Technology, Jan 2015, Vol 9
- [3] Dhanasri K, Kishore Kumar, Performance of Concrete by replacing Coarse Aggregate and Fine Aggregate with Blast Furnace Slag and Crusher Dust, International Journal of Innovative Research in Science, Engineering and Technology, Dec 2013, Vol 9
- [4] K.G. Hiraskar and Chetan Patil, Use of Blast Furnace Slag Aggregate in Concrete, International Journal Of Scientific & Engineering Research, May 2013, Vol 4
- [5] Dr. V.P. Singh, High Performance Concrete Using Blast Furnace Slag as Coarse Aggregate, Recent Advances in Energy, Environment and Materials
- [6] D. Baricová, A. Pribulová, P. Demeter, Comparison of possibilities the blast furnace and cupola slag utilization by concrete production, Archives O F Foundry Engineering, May 2010, Vol 10
- [7] IS 383 -1970, "Specifications for Coarse and Fine Aggregates from Natural Sources for Concrete", Bureau of Indian Standards, New Delhi.
- [8] IS 456 -2000, "Code of Practice for Plain and Reinforced Concrete", Bureau of Indian Standards, New Delhi.
- [9] IS 516 -1959, "Methods of Tests for strength of concrete", Bureau of Indian Standards, New Delhi.
- [10] IS 1199 -1959, "Methods of Sampling & Analysis of Concrete", Bureau of Indian Standards, New Delhi.
- [11] IS 2386 -1963, "Methods of Test for Aggregates for Concrete", Part 1- Particle Size & Shape, Bureau of Indian Standards, New Delhi.

ER